Generalized Rothaus construction and non-weakly regular bent functions
نویسندگان
چکیده
منابع مشابه
On the dual of (non)-weakly regular bent functions and self-dual bent functions
For weakly regular bent functions in odd characteristic the dual function is also bent. We analyse a recently introduced construction of nonweakly regular bent functions and show conditions under which their dual is bent as well. This leads to the definition of the class of dual-bent functions containing the class of weakly regular bent functions as a proper subclass. We analyse self-duality fo...
متن کاملConstruction methods for generalized bent functions
Generalized bent (gbent) functions is a class of functions f : Z 2 → Zq, where q ≥ 2 is a positive integer, that generalizes a concept of classical bent functions through their codomain extension. A lot of research has recently been devoted towards derivation of the necessary and sufficient conditions when f is represented as a collection of Boolean functions. Nevertheless, apart from the neces...
متن کاملNew infinite families of p-ary weakly regular bent functions
The characterization and construction of bent functions are challenging problems. The paper generalizes the constructions of Boolean bent functions by Mesnager [33], Xu et al. [40] and p-ary bent functions by Xu et al. [41] to the construction of p-ary weakly regular bent functions and presents new infinite families of p-ary weakly regular bent functions from some known weakly regular bent func...
متن کاملBent and generalized bent Boolean functions
In this paper, we investigate the properties of generalized bent functions defined on Z2 with values in Zq , where q ≥ 2 is any positive integer. We characterize the class of generalized bent functions symmetric with respect to two variables, provide analogues of Maiorana–McFarland type bent functions and Dillon’s functions in the generalized set up. A class of bent functions called generalized...
متن کاملGeneralized Boolean Bent Functions
The notions of perfect nonlinearity and bent functions are closely dependent on the action of the group of translations over IF2 . Extending the idea to more generalized groups of involutions without fixed points gives a larger framework to the previous notions. In this paper we largely develop this concept to define G-perfect nonlinearity and G-bent functions, where G is an Abelian group of in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2016
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2016.02.005